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The interaction of oblique monochromatic incident waves with a horizontal flexible
membrane is investigated in the context of two-dimensional linear hydro-elastic theory.
First, analytic diffraction and radiation solutions for a submerged impermeable
horizontal membrane are obtained using an eigenfunction expansion method.
Secondly, a multi-domain boundary element method (BEM) is developed to confirm
the analytic solutions. The inner solution based on a discrete membrane dynamic
model and simple-source distribution over the entire fluid boundaries is matched to the
outer solution based on an eigenfunction expansion. The numerical solutions are in
excellent agreement with the analytic solutions. The theoretical prediction was then
compared to a series of experiments conducted in a two-dimensional wave tank at
Texas A&M University. The measured reflection and transmission coefficients
reasonably follow the trend of predicted values. Using the computer program
developed, the performance of surface-mounted or submerged horizontal membrane
wave barriers is tested with various system parameters and wave characteristics. It is
found that the horizontal flexible membrane can be an effective wave barrier if properly
designed.

1. Introduction

Most floating wave barriers are known to be ineffective in long waves unless their
size is comparable to the pertinent wavelength. Therefore, to be a very effective wave
barrier, the structural dimension has to be large and the resulting high construction
cost has been a major obstruction for the realization of many floating-breakwater
projects. During the past decade, there has been a gradual increase of interest in the use
of flexible plates or membranes as alternative, effective, inexpensive wave barriers. In
particular, the membrane is light and rapidly deployable, and thus it may be an ideal
candidate as a portable temporary breakwater.

There have been many theoretical and experimental studies with regard to the
performance of vertical flexible wave barriers. For example, the efficiency of a vertical-
elastic-plate breakwater clamped at the seafloor was investigated by Lee & Chen (1990)
and Williams, Geiger & McDougal (1991). Abul-Azm (1994) also showed that the
efficiency of the elastic-beam breakwater can be improved by tuning two vertical plates.
On the other hand, the performance of a vertical-screen membrane breakwater, which
is equivalent to the tensioned elastic-beam breakwater with zero bending rigidity, was
investigated by Thomson et al. (1992), Aoki, Liu & Sawaragi (1994), Kim & Kee (1996),
Kee & Kim (1997), and Williams (1996). Using the linear wave theory and membrane-
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motion equation, Kim & Kee (1996) and Kee & Kim (1997) showed that almost
complete reflection was possible by a vertically flexible membrane despite appreciable
sinusoidal motions, which tend to generate only exponentially decaying local
(evanescent) waves in the lee side. The theory was compared favourably with 2-D
tank experiments (Kim et al. 1996). This interesting phenomenon can also be partly
explained by a classical wavemaker theory (Dean & Dalrymple 1991).

One of the major problems associated with the use of a flexible vertical screen is the
expected large wave loading and possible blockage of currents. In view of this, the
possibility of using an alternative horizontal membrane, which has not been studied in
the open literature, is investigated in this paper. In particular, the submerged
horizontal membrane does not hamper the seascape and also allows the passage of
ships and currents. Since the horizontal membrane does not directly block incoming
waves, the diffracted and radiated waves including various elastic modes have to be
properly tuned to be an effective wave barrier. The formulation for the interaction of
a submerged horizontal membrane with waves is in general more complicated than the
vertical-membrane case. Siew & Hurley (1977) and McIver (1985), for instance, studied
the diffraction of linear waves by a submerged horizontal rigid flat plate. They showed
that it can reflect significant amounts of incident wave energy at certain wave
frequencies. In the present study, it is shown that the overall wave-blocking efficiency
can be greatly improved by using horizontal flexible membranes instead of rigid plates.
The relevant hydro-elastic theory is formulated in §2 for arbitrary incident wave
angles.

In §3, a multi-domain boundary element method (BEM) is independently developed
to confirm the analytic solutions derived in the preceding section. The computational
domain is decomposed into inner and outer domains. Inside the inner region, a simple-
source (modified Bessel function of the second kind) distribution and a discrete
membrane dynamic model are used. For the outer region, an eigenfunction expansion
method is used. The inner solution is matched at vertical matching boundaries to the
outer solution based on the continuity of pressure and normal velocity. The numerical
results compare excellently with the analytic solutions. It is also shown that both
analytic and numerical solutions satisfy energy conservation. The present hydroelastic
theory is also verified by a series of experiments conducted in a two-dimensional wave
tank at Texas A&M University, which is summarized in §4. It is seen that the wave-
blocking performance by a horizontal flexible membrane can be reasonably predicted
by the present linear hydro-elastic theory.

Finally, in §5, the performance of various designs of horizontal-membrane wave
barriers is studied for a variety of wave conditions or water depths. It is shown that the
system can be highly efficient if it is properly designed and the high-performance region
can be controlled by changing relevant design parameters. The results are summarized
and concluding remarks are given in §6.

2. Mathematical formulation and analytic solutions

We consider the interaction of a horizontal membrane wave barrier with
monochromatic oblique incident waves. Cartesian axes are chosen with the (x, z)-axes
in the mean free surface and the y-axis pointing vertically upwards. The water depth
is denoted by h and the submergence depth of the membrane by d. It is assumed that
both ends of the membrane are fixed at x¯³a, and a uniform tension T is applied on
the membrane in the x-direction (see figure 1a). It is also assumed that the fluid is
incompressible and inviscid, and the wave and membrane motions are small so that
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F 1. (a) Definition sketch for horizontal impermeable flexible membrane. (b) Integration
domains for a numerical solution. (c) Experimental set-up of a submerged horizontal membrane
breakwater.

linear potential theory can be used. The fluid particle velocity can then be described by
the gradient of a velocity potential Φ(x, y, z, t). The wave profile periodically changes
in the z-direction; thus the variation in the z-direction can be separated out. Then,
a two-dimensional analysis can be applied at each section. Assuming harmonic
motion of frequency ω, the velocity potential can be written as Φ(x, y, z, t)¯
Re[φ(x, y) eikzz−i

ωt], where k
z
¯k

"
sin θ is the z-component wavenumber and θ is the

heading of incident waves with respect to the x-axis. Similarly, the vertical displacement
of membrane can be written as

ζ(x, z, t)¯Re[ξ(x) eikzz−i
ωt], (2.1)

where ξ(x) is the complex displacement of membrane.
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The velocity potential φ satisfies the modified Helmholtz equation

¥#φ
¥x#

­
¥#φ
¥y#

®k#

"
sin# θφ¯ 0 in the fluid, (2.2)

with the following boundary conditions:

¥φ
¥y

®νφ¯ 0 on y¯ 0 ν¯
ω#

g
, (2.3)

¥φ
¥y

¯ 0 on y¯®h, (2.4)

lim
xU³¢

¥φ
¥x

yik
"
cos θφ ¯ 0, (2.5)

¥φ
¥y

¯®iωξ on y¯®d, ®a%x% a. (2.6)

The complex displacement of the membrane can be expanded in terms of a set of its
natural modes:

ξ(x)¯ 3
¢

l="

|
l
f
l
(x), (2.7)

where |
l
is the unknown complex modal amplitude corresponding to the lth mode. The

modal functions and eigenvalues of the membrane satisfying the membrane equation
and the end condition are given by

f
l
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4
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a
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[2(l®1)­1]π
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(x)¯ sin
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l

x

a
, λA

l
¯ lπ (l¯ 1, 2, 3,…),

(2.8)

where the superscripts S and A denote symmetric and asymmetric modes about x¯ 0,
respectively. The modal functions given in equation (2.8) are orthogonal to each
other in the interval [®a, a] :

a

−a

f
i
(x) f

j
(x) dx¯

a,

0,

i¯ j

i1 j.
(2.9)

Including all the flexible membrane modes, the complex potential φ(x, y) can be
expressed in the form

φ(x, y)¯φ
D
(x, y)­3

¢

l="

|
l
φ
lR

(x, y),

φ
D
(x, y)¯φ

I
(x, y)­φ

S
(x, y),

5

6

7

8

(2.10)

where φ
D

is the diffraction potential and φ
S
,φ

lR
denote the scattering and radiation

potential, respectively. The incident wave potential φ
I

is given by

φ
I
(x, y)¯®

igA

ω

coshk
"
(y­h)

coshk
"
h

eik"cos
θx, (2.11)
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where g is the gravitational acceleration, A is the wave amplitude, and k
"

is the
wavenumber satisfying the usual dispersion relation

ω#

g
¯k

"
tanhk

"
h. (2.12)

From now on, A is set to be unity for convenience.

2.1. Diffraction problem

The diffraction potential φ
D

satisfies equation (2.2)–(2.5) and the following membrane
boundary condition:

¥φ
D

¥y
¯ 0 on y¯®d, ®a%x% a. (2.13)

In the following, the symmetry of the fluid and membrane is used by splitting φ
D

into
symmetric and asymmetric parts.

φ
D
(x, y)¯φS

D
(x, y)­φA

D
(x, y), (2.14a)

where

φS
D
(®x, y)¯φS

D
(x, y),

¥φS
D

¥x
¯ 0

φA
D
(®x, y)¯®φA

D
(x, y), φA

D
¯ 0

5

6

7

8

on x¯ 0. (2.14b)

The fluid domain is divided into three regions, as shown in figure 1(a). Region (I) is
defined by x%®a, ®h! y! 0, region (II) by rxr% a,®d! y! 0 and region (III) by
rxr% a, ®h! y!®d.

The symmetric diffraction potentials in the three fluid regions are written as

φS(")
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ig
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(2.15a)

where
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(2.15b)

The eigenfunctions f
"n

(y), f
#n

(y), and f
$n

(y) are given by

f
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(2.16)
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f
$n
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(h®d ), n& 0. (2.18)
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The eigenvalues k
"n

,k
#n

,k
$n

are the solutions of the following equations:

k
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(2.19)
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(2.20)

k
$n

¯ nπ/(h®d ), n& 0. (2.21)

The unknown coefficients aS
n
, bS

n
, cS

n
(n¯ 0, 1, 2,…) can then be determined by invoking

the continuity of potential and horizontal velocity at x¯®a. The continuity of φS
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(2.22a, b).

Multiplying (2.22a) by f
#m

(y) and integrating with respect to y over [®d, 0], we obtain
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Here k
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, k
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are real for n" 0, while k
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, k
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are imaginary and defined by k
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"
,

k
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#
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where
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On the other hand, the continuity of ¥φS
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Multiplying both sides of equation (2.25) by f
"m

(y) and integrating with respect to y
from ®h to 0, we obtain
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The final matrix equation for aS
m

can then be obtained by substituting equation (2.23)
and (2.24) into equation (2.26a) :
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By solving the above simultaneous algebraic equations, the unknown constants aS
n

can be determined. Subsequently, the other unknown constants bS
n
, cS

n
can be derived

from equations (2.22) and (2.23) as follows:
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Similarly, the asymmetric diffraction potentials in the three fluid regions are written
as
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The unknown coefficients aA
n
, bA

n
, cA
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(n¯ 0, 1, 2,…) can be determined in a similar

manner by applying the continuity of potentials and horizontal velocities on x¯®a :
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The remaining unknown coefficients bA
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can then be determined from
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2.2. Radiation problem

The radiation potential of each mode, φ
lR

, is governed by (2.2)–(2.5) and the following
body-boundary condition:
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For simplicity, we split φ
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into symmetric and asymmetric parts as in the diffraction
problem:
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The radiation potentials in regions (II) and (III) can be represented by the sum of a
homogeneous solution and a particular solution. The homogeneous solutions look
similar to those considered in the diffraction problem. The symmetric radiation
potentials in each region can be written as
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The symmetric radiation potentials can be expressed in a similar manner :

φA(")
lR

¯®
ig

ω 3
¢

n=!

aA
ln

eα
"n(x+a) f

"n
(y),

φA(#)
lR

¯®
ig

ω 3
¢

n=!

bA
ln

sinh (α
#n

x) f
#n

(y)­
iω

g
φh A(#)
lR

(x, y) ,

φA($)
lR

¯®
ig

ω 3
¢

n=!

cA
ln

sinh (α
$n

x) f
$n

(y)­
iω

g
φh A($)
lR

(x, y) .

5

6

7

8

(2.35)

The particular solutions in regions (II) and (III) satisfying the inhomogeneous body-
boundary condition can be obtained as
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The unknown constants in equations (2.34) and (2.35) can be determined in a similar
manner to the diffraction problem using the matching conditions at x¯®a. The
simultaneous algebraic equations for the unknown constants aS,A

lm
in region (I) are given

by
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where
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The other unknown coefficients can be determined from
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2.3. Membrane response

Neglecting viscous (or material) damping, the motion of the membrane is governed by
the inhomogeneous one-dimensional wave equation as follows:

T
d#ξ

dx#

­mω#ξ¯®iρω[φ($)(x,®d )®φ(#)(x,®d )], (2.43)
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where T, ρ, and m are the membrane tension, fluid density, and membrane mass per
unit length, respectively. Substituting
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D
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into (2.43) yields
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Multiplying (2.44a) by f

i
(x) and integrating over the membrane, we obtain
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The symbols K
ij
, M

ij
, and F

i
represent the generalized (modal) stiffness matrix, mass

matrix and force vector, respectively, and aW
ij

and bW
ij

are the generalized added-mass
and radiation-damping tensors. Truncating the series of (2.45a) at the appropriate
term M, we can solve for the unknown complex amplitudes |

j
corresponding to each

mode. When the membrane is on the free surface, a hydrostatic correction term needs
to be added (Newman 1994).

Finally, the reflection and transmission coefficients can be determined from
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(2.46)

The vertical hydrodynamic forces on the horizontal membrane can be calculated from

F¯®iρω
a

−a

[φ($)(x,®d )®φ(#)(x,®d )] dx. (2.47)

3. Numerical method

In this section, a numerical method based on a boundary integral equation is
developed to confirm the analytic solutions described in the preceding section. The
fluid domain is decomposed into two regions, inner and outer, as shown in figure 1(b).
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The far-field solution is expressed by the expansion of the eigenfunctions (e.g. see the
first equation of (2.15a)) which satisfy the modified Helmholtz equation, and free-
surface, bottom, and radiation boundary conditions. The inner domain is divided into
two sub-regions, as shown in figure 1(b). The inner solution in region I satisfies the
boundary value problem given by equation (2.2)–(2.4) and the following boundary
condition on the membrane:

¥φ
¥y

y=−d³
!

¯®iωξ on ®a%x% a. (3.1)

On the other hand, the inner solution in region II satisfies the bottom condition and
(3.1). In addition, the inner solutions are to be matched at the respective matching
boundaries Γ

a³ and Γ³. The velocity potential in the inner region can be obtained by
applying Green’s theorem with a Green function Gq . The resulting integral equation is
given by

®
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where the Green function Gq is the fundamental solution satisfying
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where r is the distance between source point (x, y) and field point (x
!
, y

!
) and K

!
is the

second-kind modified Bessel function of zeroth order. The normal derivative of Gq can
also be obtained analytically in terms of K

"
. To convert the above integral equation to

a matrix equation, the entire boundary of the inner region is discretized by N elements,
and the values of φ and ¥φ}¥n are assumed to be constant over each element. Since the
simple source K

!
is used, the bottom topography of the inner region can be arbitrary.

Substituting the boundary conditions of region I into (3.2), the following equation is
obtained:
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where ξ
j
is the motion amplitude of the membrane and Γ

F
, Γ³, Γ

b"
, Γ

a³, Γ
S

are the
free surface, matching boundary I (with the outer region), bottom surface, matching
boundary II (with region II), and membrane surface, respectively. The influence
coefficient H ij and Gij are defined by

H ij¯
Γ
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Similarly, substituting the boundary conditions of region (II) into (3.2), we obtain
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At the matching boundary Γ
a³, the pressure and normal velocity must be continuous

¥φa

¥n
¯

¥φ(")

¥n
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, φa ¯φ(")¯φ(#) at Γα³, (3.6)

where the overbar means the value newly defined at the matching boundary Γ
a³.

On the membrane surface, the following dynamic condition has to be satisfied:
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in which λ¯ω(m}T )"/# with T and m being the membrane tension and mass per unit
length, respectively, and c

d
the linearized damping coefficient. Here, it is assumed that

the initial tension T is large so that the effects of dynamic tension can be neglected. To
transform the membrane equation into a discretized form, we divided the membrane
surface into N

S
elements with ξ representing the displacement of the centre point :
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where ∆x
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is the length of the jth segment, and ∆xm
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¯ (∆x
j−"

­∆x
j
)}2. The above

equation can be changed into a matrix form
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where Ξ is an N
S
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S
matrix. Substituting (3.7) and (3.10) into (3.4) and (3.6), we

obtain the following matrix equations:
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By applying a remaining matching condition (continuity of pressure and normal
velocity) between the far field solution and the inner solution I at Γ³, a final matrix
equation can be derived and the unknown coefficients of the outer solution can be
determined.

When a membrane is located on the free surface, a simpler two-domain approach
can be used using only a single inner solution. When the system is submerged, however,
the inner domain should be separated into two subregions since the membrane is
infinitely thin.

4. Experiments

In order to validate the theory and numerical procedure developed in the preceding
section, we conducted a series of experiments in the two-dimensional wave tank (37 m
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Experiment
no. 1

Experiment
no. 2

Experiment
no. 3

Membrane length (cm) 80 80 80
Membrane width (cm) 82 82 82
Submembrane depth (cm) 16 16 0
Water depth (cm) 80 80 56
Membrane tension (kg F) 36 21 36
Wave frequency (Hz) 0.5–1.4 0.5–1.4 0.5–1.4
Wave amplitude (cm) 3, 4, 5 3 3

T 1. Experimental conditions

long, 0.91 m wide, and 1.22 m deep) located at Texas A&M University. The glass-
walled wave tank is equipped with a dry-back, hinged-flap wave maker capable of
producing regular and irregular waves.

The wave elevation was measured with resistance wave gauges that have an accuracy
of ³0.1 cm. A probe measuring incident and reflected wave heights and another probe
measuring the transmitted wave heights are placed 9.1 m and 22.9 m from the
wavenumber, respectively. The wave barrier model was placed 18.3 m from the
wavemaker between the two probes (see figure 1c). Regular waves were generated by
a user-defined time-voltage input to the wave maker. The wave frequency range used
in our experiments was from 0.5 to 1.4 Hz. The wave heights used were 6, 8 and 10 cm.
The time series of the regular wave packet generated was sinusoidal with the beginning
and end of the series attenuated in amplitude.

The model membrane (m¯ 0.17 kg m−#) was made of a thin stretch-resistible plastic
material resembling a plastic tarpaulin. The length and width of the membrane were
80 and 82 cm, respectively. The ends of the membrane were attached to two horizontal
steel bars which are fixed by four vertical steel frames clamped to the tank, as shown
in figure 1(c). The tension on the membrane was provided by a series of string-weight
units. The end-bar of the tensioned membrane was then fixed to a new location of the
steel frame. After the tension is correctly given, the string-weight units were removed.
Table 1 summarizes the principal characteristics of the models and wave conditions
used in the experiments.

The signal of the incident wave train is obtained as it passes the probe toward the
membrane breakwater. Then, the reflected wave train is recorded as the reflected waves
pass the probe again in the opposite direction. After averaging the wave heights for the
incident, reflected, and transmitted wave trains, the reflection coefficient R

f
and

transmission coefficient T
r
can be calculated from the ratio of the averaged reflected

and transmitted wave height to the averaged incident wave height. During the
experiments, we observed that reflected and transmitted waves were repeatedly
reflected from the wave maker and beach. In order to minimize the effects of multiple
reflection, the present method was adopted in favour of the moving-single probe
method or three-probe method (Isaacson 1991) which require a relatively longer time
to establish a steady state. It is shown in Hagan (1994) that the present method is more
reliable than the moving- or three-probe methods when nonlinear phenomena or
multiple reflections exist. In most of our experiments, the errors estimated from the
energy relation were kept within 10%. The discrepancy can be attributed to viscous,
gap, and nonlinear effects, and membrane material damping, etc. When the membrane
is located on or very close to the calm water level, the energy-conservation error is
increased due to wave overtopping the membrane.
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F 2. Convergence of reflection coefficient with (a) the number of natural modes of the
membrane for N¯ 10 (N¯number of eigenfunctions) ; and (b) the number of eigenfunctions for
M¯ 5. d}h¯ 0.2, a}h¯ 0.5, T}ρgh#¯ 0.1, θ¯ 0°.

MAN 5 10 20 40 60

1 0.4617 0.4566 0.4517 0.4486 0.4475
5 0.4137 0.4049 0.3981 0.3941 0.3927

10 0.4136 0.4046 0.3981 0.3941 0.3927

T 2. Convergence test for the case of figure 2 at k
"
h¯ 6

5. Results and discussion

The analytic solutions described in §2 were compared with the BEM-based
numerical solutions explained in §3. First, the convergence of analytic solutions with
the number of natural modes M and eigenfunctions N is shown in figure 2. A more
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(b)

F 3. Reflection and transmission coefficient of a submerged (d¯ 0.2h, ——, E ; ––––, E) and
floating (d¯ 0, - - - - - - ; _ ; –- -–-, _) horizontal membrane breakwater as function of non-
dimensional wavenumber k

"
h for a}h¯ 0.5, T}ρgh#¯ 0.1, and θ¯ 0°. Lines are for analytic

solutions and symbols are for BEM solutions. (b) Transmission coefficients of a submerged horizontal
membrane breakwater as function of non-dimensional wavenumber k

"
h for d}h¯ 0.2, a}h¯ 0.5,

T}ρgh#¯ 0.1; ——, E, θ¯ 0°, - - - - - -, D, θ¯ 15°, – – –, y, θ¯ 30°. (Lines, analytic solutions,
symbols, BEM solutions).

detailed convergence-test result for k
"
h¯ 6 can be seen in table 2. It is seen that the

convergence with M is faster than that with N and results with 1% error can be
obtained with M¯ 5, N¯ 10. Next, the analytic solutions with M¯ 5, N¯ 10 are
compared in figure 3(a) with the BEM solutions. For the BEM result, 500 total
elements for the submerged membrane and 200 total elements for the surface-mounted
membrane were used. More elements were used for the submerged membrane case due
to more computational domains and boundaries, as explained in §3. The two solutions
are in good agreement in both submerged and surface-mounted cases. The two results
also agree well in the case of oblique incidence waves and converge uniformly toward
the normal-incidence results as the wave angle approaches zero, as can be seen in figure
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F 4. Comparison of the infinite-tension case (——) with McIver’s rigid-plate result (E)
(a}h¯ 0.5, d}h¯ 0.1).
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F 5. (a) Reflection coefficient and (b) hydrodynamic loading of a submerged horizontal
membrane breakwater as function of non-dimensional tension T}ρgh# and wavenumber k

"
h for

d}h¯ 0.2, a}h¯ 0.5, and θ¯ 0°.
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F 6. Reflection coefficient of a submerged impermeable membrane breakwater as function
of submergence depth d}h and wavenumber k

"
h for a}h¯ 0.5, T}ρgh#¯ 0.1, and θ¯ 0°.
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F 7. Responses of a membrane (rξr}A) as a function of wavenumber k
"
h and horizontal

coordinate x}2a for (a) d}h¯ 0.1, and (b) 0.2 (a}h¯ 0.5, T}ρgh#¯ 0.1, and θ¯ 0°).

3(b). In addition, both analytic and numerical solutions were checked against the
energy relation R#

f
­T #

r
¯ 1. The infinite-tension case corresponds to the diffraction by

a rigid horizontal plate which was studied by McIver (1985) for the normal-incidence
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F 8. Model response amplitude as function of wavenumber k
"
h and horizontal coordinate

x}2a for d}h¯ 0.2, a}h¯ 0.5, T}ρgh#¯ 0.1, and θ¯ 0°. (a) First mode, (b) second mode,
(c) third mode.

case. The correctness of the limiting case was checked against McIver’s results, as can
be seen in figure 4. In the following, the analytic solutions with M¯ 5, N¯ 10 were
used to investigate the performance of a horizontal flexible membrane wave barrier for
various design conditions. The membrane mass per unit length used for these
numerical examples was 1 kg m−#.
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F 9. Reflection coefficients of a submerged impermeable membrane breakwater as function
of length of membrane a}h and wavenumber k

"
h for d}h¯ 0.2, T}ρgh#¯ 0.1, and θ¯ 0°.

In figures 5(a) and 5(b) the reflection coefficients by and hydrodynamic loading on
a particular horizontal membrane are plotted for various membrane tensions. It is seen
that flexible membranes generally perform better than rigid plates (infinite tension) and
there exists an optimal tension for the given design condition. In figure 5(b) the
hydrodynamic loading for the lower tension (or more flexible membrane) tends to be
smaller but has a larger and narrower peak near the resonance region.

In figure 6, the membrane tension (T ) and length (2a) are fixed and the submergence
depth (d ) is varied from 0 to 0.3 h. For this example, the overall efficiency is best for
the case d¯ 0.2h. The trend of the limiting case d¯ 0 (membrane on the calm water
surface) is quite different from that of the other curves because only the lower part of
the surface-mounted membrane is exposed to the fluid loading. In figure 7, the
amplitudes of membrane responses (normalized by incident wave amplitude) are
plotted for the cases d¯ 0.1h and 0.2h as a function of dimensionless x-coordinate and
wavenumbers. It is interesting to see that the performance is good when membrane
motions are not small, which indicates that the motion-induced waves in this case tend
to reduce the transmitted waves through phase cancellation. As a reference, the modal
amplitudes of each mode (normalized by incident wave amplitude) are plotted in figure
8 for the case d¯ 0.2h. It is shown that the model amplitudes of higher harmonics are
rapidly decreased. The higher harmonics become relatively more important at higher
k
"
h values.
In the next figure (figure 9), the membrane tension and submergence depth are fixed

and the size (length) of membrane is varied from a¯ 0.3h to 0.6h. Interestingly, the
bandwidth of the high-performance region is largest when a¯ 0.4h, which implies that
the efficiency is not necessarily improved with the larger size of membrane. However,
the non-zero reflection region can be extended to longer waves by increasing the size
of membrane.

We next plot in figure 10(a) the reflection coefficients of a horizontal membrane with
the different incident wave headings. We can see that the efficiency for oblique waves
can increase or decrease compared to the normal-incidence case depending on the wave
frequencies. Interestingly, the performance in the long-wave regime k

"
h! 1 is little
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F 10. (a) Reflection coefficients of a submerged impermeable membrane breakwater as function
of incident heading angle θ and wavenumber k

"
h for d}h¯ 0.2, a}h¯ 0.5, and T}ρgh#¯ 0.1.

(b) Three-dimensional and contour plots of T
r
for the case shown in (a).
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influenced by the change of incident angles. Figure 10(b) shows the corresponding
three-dimensional and contour plots for transmission coefficients.

Finally, the computational results for several designs are compared with the
experimental results conducted in the two-dimensional wave tank located at Texas
A&M University. The measured values generally follow the trend of the computed
curves. The same experiment was conducted for three different incident wave
amplitudes, and the general trend looks similar. It can be seen in figure 11 that the wave
blocking performance is indeed good in the range 0.8! f! 1.3 Hz, as predicted by the
present linear hydro-elastic theory. In the same figure, we also show the effects of
viscous (or material) damping (10% damping ratio) on membrane motions. For the
estimation of the damping ratio, a linear damping coefficient is assumed and the first-
mode added mass was used to calculate the virtual modal mass. We can notice that its
effect is the largest near the resonance region ( fE 0.35 Hz). The discrepancy between
the predicted and measured results can be attributed to the uncertainties in the amount
of viscous (or material) damping, nonlinear effects, gap or end effects, etc. In
particular, we observed during the experiment that the membrane response was not
perfectly uniform in the z-direction mainly due to end effects. Figure 12 shows similar
comparisons for smaller membrane tension. Again, the measured values generally
follow the predicted values. The wave blocking efficiency in this case is very good when
f" 0.8 Hz and near fE 0.3 Hz. The next figure (figure 13) shows similar comparisons
for the surface-mounted membrane. The performance of this design is not good unless
f" 1.2 Hz. For this particular case, the wave overtopping the surface-mounted
membrane adds more uncertainty with regard to the validity of the present theoretical
model. Despite the additional uncertainty, the trend of experimental values follows
reasonably that of predicted values.

6. Summary and conclusions

The interaction of oblique monochromatic incident waves with a horizontal flexible
membrane was investigated in the context of two-dimensional linear hydro-elastic
theory. In §2, analytic diffraction and radiation solutions for a submerged horizontal
membrane were obtained for arbitrary incident wave angles by matching the
eigenfunction solutions in the three fluid domains. The analytic solutions were
confirmed by independently developed numerical solutions, which used a discrete
membrane dynamic model and simple-source (second-kind modified Bessel function)
distribution method. The theoretical prediction was then compared with a series of
experiments conducted with a stretch-resistible horizontal membrane and reasonable
agreement was obtained.

Using the computer program developed, the performance of surface-mounted or
submerged horizontal membrane wave barriers was tested with various membrane
tensions, lengths, and submergence depths. Since the horizontal membrane does not
directly block incoming waves, the transmitted and motion-induced waves need to be
properly cancelled for it to be an effective wave barrier. It was seen that an optimal
combination of design parameters existed for given water depths and wave
characteristics. The efficiency can be further enhanced and the motions reduced by
using a porous membrane, which will be the subject of future study.

From the present study, it can be concluded that a properly designed horizontal
flexible membrane can be a very effective wave barrier and its optimal design can be
found through a comprehensive parametric study using the theory and computer
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programs developed. For further verification, a more rigorous nonlinear time-domain
numerical analysis and larger-scale experiments need to be done.

This research was sponsored by the Korea Research Institute of Ships & Ocean
Engineering (KRISO) through KRISO}TAMU cooperative research program. This
work was also partly supported by the Offshore Technology Research Center through
the National Science Foundation Engineering Research Centers Program, Grant
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